在Mathematica中实现四叉树
收藏

我在Mathematica中实现了四叉树。我不熟悉使用像Mathematica这样的功能编程语言进行编码,我想知道我是否可以通过更好地使用模式来改善它或使其更紧凑。

(我知道我可以通过修剪未使用的节点来优化树,并且可能会有更好的数据结构(例如k-d树)用于空间分解。)

此外,我仍然不满意每次添加新点时都复制整个树/表达式的想法。但是我的理解是,对表达式进行整体操作而不修改部分是函数式编程方式。我希望在这方面进行任何澄清。

MV

代码

ClearAll[qtMakeNode, qtInsert, insideBox, qtDraw, splitBox, isLeaf, qtbb, qtpt];

(* create a quadtree node *)
qtMakeNode[{{xmin_,ymin_}, {xmax_, ymax_}}] := 
{{}, {}, {}, {}, qtbb[{xmin, ymin}, {xmax, ymax}], {}}

(* is pt inside box? *)
insideBox[pt_, bb_] := If[(pt[[1]] <= bb[[2, 1]]) && (pt[[1]] >= bb[[1, 1]]) &&
  (pt[[2]] <= bb[[2, 2]]) && (pt[[2]] >= bb[[1, 2]]),
  True, False]

(* split bounding box into 4 children *)
splitBox[{{xmin_,ymin_}, {xmax_, ymax_}}] := {
 {{xmin, (ymin+ymax)/2}, {(xmin+xmax)/2, ymax}},
 {{xmin, ymin},{(xmin+xmax)/2,(ymin+ymax)/2}},
 {{(xmin+xmax)/2, ymin},{xmax, (ymin+ymax)/2}},
 {{(xmin+xmax)/2, (ymin+ymax)/2},{xmax, ymax}}
}

(* is node a leaf? *)
isLeaf[qt_] := If[ And @@((# == {})& /@ Join[qt[[1;;4]], {List @@ qt[[6]]}]),True, False]

(*--- insert methods ---*)

(* qtInsert #1 - return input if pt is out of bounds *)
qtInsert[qtree_, pt_] /; !insideBox[pt, List @@ qtree[[5]]]:= qtree

(* qtInsert #2 - if leaf, just add pt to node *)
qtInsert[qtree_, pt_] /; isLeaf[qtree] :=
{qtree[[1]],qtree[[2]],qtree[[3]],qtree[[4]],qtree[[5]], qtpt @@ pt} 

(* qtInsert #3 - recursively insert pt *)
qtInsert[qtree_, pt_] := 
  Module[{cNodes, currPt},
  cNodes = qtree[[1;;4]];
  (* child nodes not created? *)
  If[And @@ ((# == {})& /@ cNodes), 
    (* compute child node bounds *)
    (* create child nodes with above bounds*)
    cNodes = qtMakeNode[#]& /@ splitBox[List @@ qtree[[5]]];
  ];
  (* move curr node pt (if not empty) into child *)
  currPt = List @@ qtree[[6]];
  If[currPt != {},
    cNodes = qtInsert[#, currPt]& /@ cNodes; 
  ];
 (* insert new pt into child *)
 cNodes = qtInsert[#, pt]& /@ cNodes;
 (* return new quadtree *)
 {cNodes[[1]],cNodes[[2]], cNodes[[3]], cNodes[[4]], qtree[[5]], {}}
 ]

(* draw quadtree *)
qtDraw[qt_] := Module[{pts, bboxes},
  pts = Cases[qt, _qtpt, Infinity] /. qtpt :> List;
  bboxes = Cases[qt, _qtbb, Infinity] /. qtbb :> List;
  Graphics[{
   EdgeForm[Black],Hue[0.2], Map[Disk[#, 0.01]&, pts],
   Hue[0.7],EdgeForm[Red], FaceForm[],(Rectangle @@ #) & /@ bboxes
  },
  Frame->True
 ]
]

用法

Clear[qt];
len = 50;
pts = RandomReal[{0, 2}, {len, 2}];
qt = qtMakeNode[{{0.0, 0.0}, {2.0, 2.0}}];
Do[qt = qtInsert[qt, pts[[i]]], {i, 1, len}]
qtDraw[qt]

输出量

最佳答案

Here is a more compact version. It uses the same data structure as the original version. The functions splitBox and insideBox are essentially the same as well (just written in a slightly different way).

Instead of adding points one-by-one, the initial box contains all the points at the beginning so there is no need for the qtInsert routines. In each recursion step, the boxes containing more than one point are split and the points are distributed over the sub-boxes. This means that all nodes with more than one point are leafs so there is no need to check for that either.

qtMakeNode[bb_, pts_] := {{}, {}, {}, {}, qtbb @@ bb, pts}

splitBox[bx_] := splitBox[{min_, max_}] := {min + #, max + #}/2 & /@  
  Tuples[Transpose[{min, max}]]


insideBox[pt_, bb_] := bb[[1, 1]] <= pt[[1]] <= bb[[2, 1]] && 
  bb[[1, 2]] <= pt[[2]] <= bb[[2, 2]]

distribute[qtree_] := Which[
  Length[qtree[[6]]] == 1, 
    (* no points in node -> return node unchanged *)
  qtree,

  Length[qtree[[6]]] == 1, 
    (* one point in node -> replace head of point with qtpt and return node *)
  ReplacePart[qtree, 6 -> qtpt @@ qtree[[6, 1]]],

  Length[qtree[[6]]] > 1, 
    (* multiple points in node -> create sub-nodes and distribute points *)
    (* apply distribute to sub-nodes *) 
  Module[{spl = splitBox[qtree[[5]]], div, newtreelist},
   div = Cases[qtree[[6]], a_ /; insideBox[a, #], 1] & /@ spl;
   ReplacePart[qtree, 
    Join[Table[i -> distribute[qtMakeNode[spl[[i]], div[[i]]]], {i, 4}], 
      {6 -> {}}]]]]

Example (using the original version of qtDraw):

len = 50;
pts = RandomReal[{0, 2}, {len, 2}];
qt = makeTree[qtMakeNode[{{0.0, 0.0}, {2.0, 2.0}}, pts]];
qtDraw[qt]

结果:

    公众号
    关注公众号订阅更多技术干货!