I have a list (imported from an API JSON) with a complex and nested structure that I need to tidy. I only manage to do it with for loops, which does not seem optimal : lengthy to write, long to compute with many elements and possible errors if new variations appear. Is there a way to obtain a similar results with tidyverse functions such as map()
, unnnest()
, flatten()
, squash()
or equivalents in base R? I haven't found any example in StackOverflow with similar combination of issues (pointed below the example).
Here is the reproducible example :
metadata <- list(
table1 = list(
attribute1 = "tb1_att1",
level_to_disard = list(
attribute2 = "tb1_att2",
columns = list(
column1 = list(
col_name = "tb1_col1_name",
col_type = "tb1_col1_type"
),
column2 = list(
col_name = "tb1_col2_name",
col_type = "tb1_col2_type"
)
),
tags = c("tag1", "tag2", "tag3"),
irrelevant = list(irrelveant1 = "blabla", irrelevant2 = "blibli")
)
),
table2 = list(
attribute1 = "tb2_att1",
level_to_disard = list(
columns = list(
column1 = list(
col_name = "tb2_col1_name",
col_irrelevant = "bloblo"
),
column2 = list(
col_name = "tb2_col2_name",
col_type = "tb2_col2_type"
)
),
tags = c("tag1", "tag3")
)
)
)
str(metadata)
# Output in console:
List of 2
$ table1:List of 2
..$ attribute1 : chr "tb1_att1"
..$ level_to_disard:List of 4
.. ..$ attribute2: chr "tb1_att2"
.. ..$ columns :List of 2
.. .. ..$ column1:List of 2
.. .. .. ..$ col_name: chr "tb1_col1_name"
.. .. .. ..$ col_type: chr "tb1_col1_type"
.. .. ..$ column2:List of 2
.. .. .. ..$ col_name: chr "tb1_col2_name"
.. .. .. ..$ col_type: chr "tb1_col1_type"
.. ..$ tags : chr [1:3] "tag1" "tag2" "tag3"
.. ..$ irrelevant:List of 2
.. .. ..$ irrelveant1: chr "blabla"
.. .. ..$ irrelevant2: chr "blibli"
$ table2:List of 2
..$ attribute1 : chr "tb2_att1"
..$ level_to_disard:List of 2
.. ..$ columns:List of 2
.. .. ..$ column1:List of 2
.. .. .. ..$ col_name : chr "tb2_col1_name"
.. .. .. ..$ col_irrelevant: chr "bloblo"
.. .. ..$ column2:List of 2
.. .. .. ..$ col_name: chr "tb2_col2_name"
.. .. .. ..$ col_type: chr "tb2_col1_type"
.. ..$ tags : chr [1:2] "tag1" "tag3"
请注意,属性位于不同的级别,某些元素(在列表中命名为“无关”)必须被丢弃,表2缺少“ attribute2”,表2的第1列缺少“ type”。 这是带有for循环和预期结果的解决方案。
# Define a function to extract column information
extract_cols <- function(x){
fields <- tibble()
if (length(x) == 0) {
return(fields)
} else {
for (i in 1:length(x)) {
fields <- add_row(fields)
# Extract name
fields$name[i] = ""
# Extract type if present of return empty string
if (any(names(x[[i]]) == "type")) {
fields$type[i] = x[[i]][["type"]]
} else {
fields$type[i] = ""
}
return(fields)
}
}
}
# Create an empty tibble for the tidy metadata. It could also be a list.
library(tibble)
meta <- tibble()
# for (i in 1:1) {
for (i in 1:length(metadata)) {
meta <- add_row(meta)
meta$attribute1[[i]] <- metadata[[i]][["attribute1"]]
meta$attribute2[[i]] <- ifelse(length(metadata[[i]][["level_to_disard"]][["attribute2"]]) > 0,
c(metadata[[i]][["level_to_disard"]][["attribute2"]]), "")
metadata[[i]][["level_to_disard"]][["attribute2"]]
meta$cols[[i]] <- extract_cols(metadata[[i]][["columns"]])
meta$tags[[i]] <- metadata[[i]][["level_to_disard"]][["tags"]]
}
str(meta)
# Output in console:
tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
$ attribute1: chr [1:2] "tb1_att1" "tb2_att1"
$ attribute2: chr [1:2] "tb1_att2" ""
$ cols :List of 2
..$ : tibble [0 × 0] (S3: tbl_df/tbl/data.frame)
Named list()
..$ : tibble [0 × 0] (S3: tbl_df/tbl/data.frame)
Named list()
$ tags :List of 2
..$ : chr [1:3] "tag1" "tag2" "tag3"
..$ : chr [1:2] "tag1" "tag3"
Is there a more straightforward way to obtain this result? The output could be a list, a tibble or a dataframe, as long as it is simplified with a similar structure than 'meta'enter code here
above.