有没有一种方法可以命令完成的过程来帮助Python中未完成的过程?

Job: sample N ints in {0, 1}, assign "sampling N_i ints" to CPU i. N = N_1 + ... + N_m. Here is an implementation in Python, where N = 16, m = 4; N_1, N_2, N_3, N_4 = 1, 2, 3, 10.

import multiprocessing as mp
import time
from random import sample

def func(Library, Timer, nums, pid, t0):
    # proc: pid, sample size: nums[pid]
    sub_Lib = []
    while True:
        time.sleep(1)
        i = sample(range(2), 1)[0]
        Library.append(i)
        sub_Lib.append(i)
        # self job finished
        if len(sub_Lib) == nums[pid]:
            Timer[pid] = round(time.time()-t0, 2)
            break
        # ult job finished
        if len(Library) == sum(nums):
            Timer[pid] = round(time.time()-t0, 2)
            break
        pass
    pass

def run_process():
    Library = mp.Manager().list()
    Timer = mp.Manager().dict()
    nums = [1, 2, 3, 10]
    t0 = time.time()
    procs = []
    for pid, num in enumerate(nums):
        proc = mp.Process(target=func, args=(Library, Timer, nums, pid, t0))
        procs.append(proc)
        pass
    for proc in procs:
        proc.start()
        pass
    for proc in procs:
        proc.join()
        pass
    result = 'Ints: {}\nTime: {}'.format(Library, Timer)
    print(result)
    pass

def main():
    run_process()
    pass

if __name__ == '__main__':
    main()
    pass

请注意,第四工序比其他工序需要更多的时间。3.是否可以订购完成的工序来帮助未完成的工序?任何帮助表示赞赏,在此先感谢您。