我正在尝试在pyspark数据框中创建一个新列。我有以下数据
+------+
|letter|
+------+
| A|
| C|
| A|
| Z|
| E|
+------+
我想根据给定的列添加一个新列
+------+-----+
|letter|group|
+------+-----+
| A| c1|
| B| c1|
| F| c2|
| G| c2|
| I| c3|
+------+-----+
可以有多个类别,其中有多个字母的单个值(大约100个,也包含多个字母)
我已经用udf完成了这项工作,并且运行良好
from pyspark.sql.functions import udf
from pyspark.sql.types import *
c1 = ['A','B','C','D']
c2 = ['E','F','G','H']
c3 = ['I','J','K','L']
...
def l2c(value):
if value in c1: return 'c1'
elif value in c2: return 'c2'
elif value in c3: return 'c3'
else: return "na"
udf_l2c = udf(l2c, StringType())
data_with_category = data.withColumn("group", udf_l2c("letter"))
Now I am trying to do it without udf
. Maybe using when
and col
. What I have tried is following. It is working, but very long code.
data_with_category = data.withColumn('group', when(col('letter') == 'A' ,'c1')
.when(col('letter') == 'B', 'c1')
.when(col('letter') == 'F', 'c2')
...
当字母的所有可能值都满足条件时,我不是很好写。在我的情况下,字母的数量可能非常大(大约100个)。所以我尝试了
data_with_category = data.withColumn('group', when(col('letter') in ['A','B','C','D'] ,'c1')
.when(col('letter') in ['E','F','G','H'], 'c2')
.when(col('letter') in ['I','J','K','L'], 'c3')
但是它返回错误。我该如何解决?
您可以尝试使用udf, 例如:
要么