Akira
发布于

9种 分布式ID生成方案,让你一次学个够

一、为什么要用分布式 ID?

在说分布式 ID 的具体实现之前,我们来简单分析一下为什么用分布式 ID?分布式 ID 应该满足哪些特征?

1、什么是分布式 ID?

拿 MySQL 数据库举个栗子:

在我们业务数据量不大的时候,单库单表完全可以支撑现有业务,数据再大一点搞个 MySQL 主从同步读写分离也能对付。

但随着数据日渐增长,主从同步也扛不住了,就需要对数据库进行分库分表,但分库分表后需要有一个唯一 ID 来标识一条数据,数据库的自增 ID 显然不能满足需求;特别一点的如订单、优惠券也都需要有唯一 ID 做标识。此时一个能够生成全局唯一 ID 的系统是非常必要的。那么这个全局唯一 ID 就叫分布式 ID。

2、那么分布式 ID 需要满足哪些条件?

  • 全局唯一:必须保证 ID 是全局性唯一的,基本要求
  • 高性能:高可用低延时,ID 生成响应要快,否则反倒会成为业务瓶颈
  • 高可用:100% 的可用性是骗人的,但是也要无限接近于 100% 的可用性
  • 好接入:要秉着拿来即用的设计原则,在系统设计和实现上要尽可能的简单
  • 趋势递增:最好趋势递增,这个要求就得看具体业务场景了,一般不严格要求

二、 分布式 ID 都有哪些生成方式?

今天主要分析一下以下 9 种,分布式 ID 生成器方式以及优缺点:

  • UUID
  • 数据库自增 ID
  • 数据库多主模式
  • 号段模式
  • Redis
  • 雪花算法(SnowFlake)
  • 滴滴出品(TinyID)
  • 百度 (Uidgenerator)
  • 美团(Leaf)

那么它们都是如何实现?以及各自有什么优缺点?我们往下看

9 种 分布式 ID 生成方案,让你一次学个够

以上图片源自网络,如有侵权联系删除

1、基于 UUID

在 Java 的世界里,想要得到一个具有唯一性的 ID,首先被想到可能就是 UUID,毕竟它有着全球唯一的特性。那么 UUID 可以做分布式 ID 吗?答案是可以的,但是并不推荐!

public static void main(String[] args) { 
       String uuid = UUID.randomUUID().toString().replaceAll("-","");
       System.out.println(uuid);
 }

UUID 的生成简单到只有一行代码,输出结果
c2b8c2b9e46c47e3b30dca3b0d447718,但 UUID 却并不适用于实际的业务需求。像用作订单号 UUID 这样的字符串没有丝毫的意义,看不出和订单相关的有用信息;而对于数据库来说用作业务主键 ID,它不仅是太长还是字符串,存储性能差查询也很耗时,所以不推荐用作分布式 ID。

优点:

  • 生成足够简单,本地生成无网络消耗,具有唯一性

缺点:

  • 无序的字符串,不具备趋势自增特性
  • 没有具体的业务含义
  • 长度过长 16 字节 128 位,36 位长度的字符串,存储以及查询对 MySQL 的性能消耗较大,MySQL 官方明确建议主键要尽量越短越好,作为数据库主键 UUID 的无序性会导致数据位置频繁变动,严重影响性能。

2、基于数据库自增 ID

基于数据库的 auto_increment 自增 ID 完全可以充当分布式 ID,具体实现:需要一个单独的 MySQL 实例用来生成 ID,建表结构如下:

CREATE DATABASE `SEQ_ID`;
CREATE TABLE SEQID.SEQUENCE_ID (
    id bigint(20) unsigned NOT NULL auto_increment, 
    value char(10) NOT NULL default '',
    PRIMARY KEY (id),
) ENGINE=MyISAM;
insert into SEQUENCE_ID(value) VALUES ('values');

当我们需要一个 ID 的时候,向表中插入一条记录返回主键 ID,但这种方式有一个比较致命的缺点,访问量激增时 MySQL 本身就是系统的瓶颈,用它来实现分布式服务风险比较大,不推荐!

优点:

  • 实现简单,ID 单调自增,数值类型查询速度快

缺点:

  • DB 单点存在宕机风险,无法扛住高并发场景

3、基于数据库集群模式

前边说了单点数据库方式不可取,那对上边的方式做一些高可用优化,换成主从模式集群。害怕一个主节点挂掉没法用,那就做双主模式集群,也就是两个 MySQL 实例都能单独的生产自增 ID。

那这样还会有个问题,两个 MySQL 实例的自增 ID 都从 1 开始,会生成重复的 ID 怎么办?

解决方案:设置起始值和自增步长

MySQL_1 配置:

set @@auto_increment_offset = 1;     -- 起始值
set @@auto_increment_increment = 2;  -- 步长

MySQL_2 配置:

set @@auto_increment_offset = 2;     -- 起始值
set @@auto_increment_increment = 2;  -- 步长

这样两个 MySQL 实例的自增 ID 分别就是:

1、3、5、7、9
2、4、6、8、10

那如果集群后的性能还是扛不住高并发咋办?就要进行 MySQL 扩容增加节点,这是一个比较麻烦的事。

9 种 分布式 ID 生成方案,让你一次学个够

从上图可以看出,水平扩展的数据库集群,有利于解决数据库单点压力的问题,同时为了 ID 生成特性,将自增步长按照机器数量来设置。

增加第三台 MySQL 实例需要人工修改一、二两台 MySQL 实例的起始值和步长,把第三台机器的 ID 起始生成位置设定在比现有最大自增 ID 的位置远一些,但必须在一、二两台 MySQL 实例 ID 还没有增长到第三台 MySQL 实例的起始 ID 值的时候,否则自增 ID 就要出现重复了,必要时可能还需要停机修改

优点:

  • 解决 DB 单点问题

缺点:

  • 不利于后续扩容,而且实际上单个数据库自身压力还是大,依旧无法满足高并发场景。

4、基于数据库的号段模式

号段模式是当下分布式 ID 生成器的主流实现方式之一,号段模式可以理解为从数据库批量的获取自增 ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表 1000 个 ID,具体的业务服务将本号段,生成 1~1000 的自增 ID 并加载到内存。表结构如下:

CREATE TABLE id_generator (
  id int(10) NOT NULL,
  max_id bigint(20) NOT NULL COMMENT '当前最大id',
  step int(20) NOT NULL COMMENT '号段的布长',
  biz_type    int(20) NOT NULL COMMENT '业务类型',
  version int(20) NOT NULL COMMENT '版本号',
  PRIMARY KEY (`id`)
)

biz_type :代表不同业务类型

max_id :当前最大的可用 id

step :代表号段的长度

version :是一个乐观锁,每次都更新 version,保证并发时数据的正确性

9 种 分布式 ID 生成方案,让你一次学个够

等这批号段 ID 用完,再次向数据库申请新号段,对 max_id 字段做一次 update 操作,update max_id= max_id + step,update 成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。

update id_generator set max_id = #{max_id+step}, version = version + 1 where version = # {version} and biz_type = XXX

由于多业务端可能同时操作,所以采用版本号 version 乐观锁方式更新,这种分布式 ID 生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。

5、基于 Redis 模式

Redis 也同样可以实现,原理就是利用 Redis 的 incr 命令实现 ID 的原子性自增。

127.0.0.1:6379> set seq_id 1     // 初始化自增ID为1
OK
127.0.0.1:6379> incr seq_id      // 增加1,并返回递增后的数值
(integer) 2

用 Redis 实现需要注意一点,要考虑到 Redis 持久化的问题。Redis 有两种持久化方式 RDB 和 AOF

  • RDB 会定时打一个快照进行持久化,假如连续自增但 Redis 没及时持久化,而这会 Redis 挂掉了,重启 Redis 后会出现 ID 重复的情况。AOF 会对每条写命令进行持久化,即使 Redis 挂掉了也不会出现 ID 重复的情况,但由于 incr 命令的特殊性,会导致 Redis 重启恢复的数据时间过长。

6、基于雪花算法(Snowflake)模式

雪花算法(Snowflake)是 Twitter 公司内部分布式项目采用的 ID 生成算法,开源后广受国内大厂的好评,在该算法影响下各大公司相继开发出各具特色的分布式生成器。

9 种 分布式 ID 生成方案,让你一次学个够

以上图片源自网络,如有侵权联系删除

Snowflake 生成的是 Long 类型的 ID,一个 Long 类型占 8 个字节,每个字节占 8 比特,也就是说一个 Long 类型占 64 个比特。

Snowflake ID 组成结构:正数位(占 1 比特)+ 时间戳(占 41 比特)+ 机器 ID(占 5 比特)+ 数据中心(占 5 比特)+ 自增值(占 12 比特),总共 64 比特组成的一个 Long 类型。

  • 第一个 bit 位(1bit):Java 中 long 的最高位是符号位代表正负,正数是 0,负数是 1,一般生成 ID 都为正数,所以默认为 0。
  • 时间戳部分(41bit):毫秒级的时间,不建议存当前时间戳,而是用(当前时间戳 - 固定开始时间戳)的差值,可以使产生的 ID 从更小的值开始;41 位的时间戳可以使用 69 年,(1L << 41) / (1000L 60 60 24 365) = 69 年
  • 工作机器 id(10bit):也被叫做 workId,这个可以灵活配置,机房或者机器号组合都可以。
  • 序列号部分(12bit),自增值支持同一毫秒内同一个节点可以生成 4096 个 ID

根据这个算法的逻辑,只需要将这个算法用 Java 语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式 ID,只需保证每个业务应用有自己的工作机器 id 即可,而不需要单独去搭建一个获取分布式 ID 的应用。

Java 版本的 Snowflake 算法实现:

/**
 * Twitter的SnowFlake算法,使用SnowFlake算法生成一个整数,然后转化为62进制变成一个短地址URL
 *
 * https://github.com/beyondfengyu/SnowFlake
 */
public class SnowFlakeShortUrl {

    /**
     * 起始的时间戳
     */
    private final static long START_TIMESTAMP = 1480166465631L;

    /**
     * 每一部分占用的位数
     */
    private final static long SEQUENCE_BIT = 12;   //序列号占用的位数
    private final static long MACHINE_BIT = 5;     //机器标识占用的位数
    private final static long DATA_CENTER_BIT = 5; //数据中心占用的位数

    /**
     * 每一部分的最大值
     */
    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
    private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
    private final static long MAX_DATA_CENTER_NUM = -1L ^ (-1L << DATA_CENTER_BIT);

    /**
     * 每一部分向左的位移
     */
    private final static long MACHINE_LEFT = SEQUENCE_BIT;
    private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
    private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT;

    private long dataCenterId;  //数据中心
    private long machineId;     //机器标识
    private long sequence = 0L; //序列号
    private long lastTimeStamp = -1L;  //上一次时间戳

    private long getNextMill() {
        long mill = getNewTimeStamp();
        while (mill <= lastTimeStamp) {
            mill = getNewTimeStamp();
        }
        return mill;
    }

    private long getNewTimeStamp() {
        return System.currentTimeMillis();
    }

    /**
     * 根据指定的数据中心ID和机器标志ID生成指定的序列号
     *
     * @param dataCenterId 数据中心ID
     * @param machineId    机器标志ID
     */
    public SnowFlakeShortUrl(long dataCenterId, long machineId) {
        if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) {
            throw new IllegalArgumentException("DtaCenterId can't be greater than MAX_DATA_CENTER_NUM or less than 0!");
        }
        if (machineId > MAX_MACHINE_NUM || machineId < 0) {
            throw new IllegalArgumentException("MachineId can't be greater than MAX_MACHINE_NUM or less than 0!");
        }
        this.dataCenterId = dataCenterId;
        this.machineId = machineId;
    }

    /**
     * 产生下一个ID
     *
     * @return
     */
    public synchronized long nextId() {
        long currTimeStamp = getNewTimeStamp();
        if (currTimeStamp < lastTimeStamp) {
            throw new RuntimeException("Clock moved backwards.  Refusing to generate id");
        }

        if (currTimeStamp == lastTimeStamp) {
            //相同毫秒内,序列号自增
            sequence = (sequence + 1) & MAX_SEQUENCE;
            //同一毫秒的序列数已经达到最大
            if (sequence == 0L) {
                currTimeStamp = getNextMill();
            }
        } else {
            //不同毫秒内,序列号置为0
            sequence = 0L;
        }

        lastTimeStamp = currTimeStamp;

        return (currTimeStamp - START_TIMESTAMP) << TIMESTAMP_LEFT //时间戳部分
                | dataCenterId << DATA_CENTER_LEFT       //数据中心部分
                | machineId << MACHINE_LEFT             //机器标识部分
                | sequence;                             //序列号部分
    }
    
    public static void main(String[] args) {
        SnowFlakeShortUrl snowFlake = new SnowFlakeShortUrl(2, 3);

        for (int i = 0; i < (1 << 4); i++) {
            //10进制
            System.out.println(snowFlake.nextId());
        }
    }
}

7、百度(uid-generator)

uid-generator 是由百度技术部开发,项目 GitHub 地址
https://github.com/baidu/uid-...

uid-generator 是基于 Snowflake 算法实现的,与原始的 snowflake 算法不同在于,uid-generator 支持自定义时间戳、工作机器 ID 和 序列号 等各部分的位数,而且 uid-generator 中采用用户自定义 workId 的生成策略。

uid-generator 需要与数据库配合使用,需要新增一个 WORKER_NODE 表。当应用启动时会向数据库表中去插入一条数据,插入成功后返回的自增 ID 就是该机器的 workId 数据由 host,port 组成。

对于 uid-generator ID 组成结构

workId,占用了 22 个 bit 位,时间占用了 28 个 bit 位,序列化占用了 13 个 bit 位,需要注意的是,和原始的 snowflake 不太一样,时间的单位是秒,而不是毫秒,workId 也不一样,而且同一应用每次重启就会消费一个 workId。

参考文献

https://github.com/baidu/uid-...

8、美团(Leaf)

Leaf 由美团开发,GitHub 地址:
https://github.com/Meituan-Di...

Leaf 同时支持号段模式和 snowflake 算法模式,可以切换使用。

号段模式

先导入源码
https://github.com/Meituan-Di... ,在建一张表 leaf_alloc

DROP TABLE IF EXISTS `leaf_alloc`;

CREATE TABLE `leaf_alloc` (
  `biz_tag` varchar(128)  NOT NULL DEFAULT '' COMMENT '业务key',
  `max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',
  `step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',
  `description` varchar(256)  DEFAULT NULL COMMENT '业务key的描述',
  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',
  PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB;

然后在项目中开启号段模式,配置对应的数据库信息,并关闭 snowflake 模式

leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=true
leaf.jdbc.url=jdbc:mysql://localhost:3306/leaf_test?useUnicode=true&characterEncoding=utf8&characterSetResults=utf8
leaf.jdbc.username=root
leaf.jdbc.password=root

leaf.snowflake.enable=false
#leaf.snowflake.zk.address=
#leaf.snowflake.port=

启动 leaf-server 模块的 LeafServerApplication 项目就跑起来了

号段模式获取分布式自增 ID 的测试 url :http://localhost:
8080/api/segment/get/leaf-segment-test

监控号段模式:
http://localhost:8080/cache

snowflake 模式

Leaf 的 snowflake 模式依赖于 ZooKeeper,不同于原始 snowflake 算法也主要是在 workId 的生成上,Leaf 中 workId 是基于 ZooKeeper 的顺序 Id 来生成的,每个应用在使用 Leaf-snowflake 时,启动时都会都在 Zookeeper 中生成一个顺序 Id,相当于一台机器对应一个顺序节点,也就是一个 workId。

leaf.snowflake.enable=true
leaf.snowflake.zk.address=127.0.0.1
leaf.snowflake.port=2181

snowflake 模式获取分布式自增 ID 的测试 url:
http://localhost:8080/api/snowflake/get/test

9、滴滴(Tinyid)

Tinyid 由滴滴开发,GitHub 地址:
https://github.com/didi/tinyid

Tinyid 是基于号段模式原理实现的与 Leaf 如出一辙,每个服务获取一个号段(1000,2000]、(2000,3000]、(3000,4000]

9 种 分布式 ID 生成方案,让你一次学个够

Tinyid 提供 http 和 tinyid-client 两种方式接入

Http 方式接入

(1)导入 Tinyid 源码:

Git clone https://github.com/didi/tinyi...

(2)创建数据表:

CREATE TABLE `tiny_id_info` (
  `id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增主键',
  `biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '业务类型,唯一',
  `begin_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '开始id,仅记录初始值,无其他含义。初始化时begin_id和max_id应相同',
  `max_id` bigint(20) NOT NULL DEFAULT '0' COMMENT '当前最大id',
  `step` int(11) DEFAULT '0' COMMENT '步长',
  `delta` int(11) NOT NULL DEFAULT '1' COMMENT '每次id增量',
  `remainder` int(11) NOT NULL DEFAULT '0' COMMENT '余数',
  `create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
  `update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
  `version` bigint(20) NOT NULL DEFAULT '0' COMMENT '版本号',
  PRIMARY KEY (`id`),
  UNIQUE KEY `uniq_biz_type` (`biz_type`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'id信息表';

CREATE TABLE `tiny_id_token` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '自增id',
  `token` varchar(255) NOT NULL DEFAULT '' COMMENT 'token',
  `biz_type` varchar(63) NOT NULL DEFAULT '' COMMENT '此token可访问的业务类型标识',
  `remark` varchar(255) NOT NULL DEFAULT '' COMMENT '备注',
  `create_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '创建时间',
  `update_time` timestamp NOT NULL DEFAULT '2010-01-01 00:00:00' COMMENT '更新时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 COMMENT 'token信息表';

INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
VALUES
    (1, 'test', 1, 1, 100000, 1, 0, '2018-07-21 23:52:58', '2018-07-22 23:19:27', 1);

INSERT INTO `tiny_id_info` (`id`, `biz_type`, `begin_id`, `max_id`, `step`, `delta`, `remainder`, `create_time`, `update_time`, `version`)
VALUES
    (2, 'test_odd', 1, 1, 100000, 2, 1, '2018-07-21 23:52:58', '2018-07-23 00:39:24', 3);


INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
VALUES
    (1, '0f673adf80504e2eaa552f5d791b644c', 'test', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');

INSERT INTO `tiny_id_token` (`id`, `token`, `biz_type`, `remark`, `create_time`, `update_time`)
VALUES
    (2, '0f673adf80504e2eaa552f5d791b644c', 'test_odd', '1', '2017-12-14 16:36:46', '2017-12-14 16:36:48');

(3)配置数据库:

datasource.tinyid.names=primary
datasource.tinyid.primary.driver-class-name=com.mysql.jdbc.Driver
datasource.tinyid.primary.url=jdbc:mysql://ip:port/databaseName?autoReconnect=true&useUnicode=true&characterEncoding=UTF-8
datasource.tinyid.primary.username=root
datasource.tinyid.primary.password=123456

(4)启动 tinyid-server 后测试

获取分布式自增ID: http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c'
返回结果: 3

批量获取分布式自增ID:
http://localhost:9999/tinyid/id/nextIdSimple?bizType=test&token=0f673adf80504e2eaa552f5d791b644c&batchSize=10'
返回结果:  4,5,6,7,8,9,10,11,12,13

Java 客户端方式接入

重复 Http 方式的(2)(3)操作

引入依赖

<dependency>
            <groupId>com.xiaoju.uemc.tinyid</groupId>
            <artifactId>tinyid-client</artifactId>
            <version>${tinyid.version}</version>
        </dependency>

配置文件

tinyid.server =localhost:9999
tinyid.token =0f673adf80504e2eaa552f5d791b644c

test 、tinyid.token 是在数据库表中预先插入的数据,test 是具体业务类型,tinyid.token 表示可访问的业务类型

// 获取单个分布式自增ID
Long id =  TinyId . nextId( " test " );

// 按需批量分布式自增ID
List< Long > ids =  TinyId . nextId( " test " , 10 );

总结

本文只是简单介绍一下每种分布式 ID 生成器,旨在给大家一个详细学习的方向,每种生成方式都有它自己的优缺点,具体如何使用还要看具体的业务需求。

评论